Abstract
Diabetes mellitus blocks protection by ischemic preconditioning (IPC), but the mechanism
is not known. We investigated the effect of ischemic preconditioning on mitogen-activated
protein kinases (extracellular signal-regulated kinases 1 and 2, c-Jun N-terminal
kinases, p38 mitogen-activated kinase) and heat shock protein 27 phosphorylation in
diabetic and nondiabetic rat hearts in vivo. Two groups of anaesthetized nondiabetic
and diabetic rats underwent a preconditioning protocol (3 cycles of 3 min coronary
artery occlusion and 5 min of reperfusion). Two further groups served as untreated
controls. Hearts were excised for protein measurements by Western blot. Four additional
groups underwent 25 min of coronary occlusion followed by 2 h of reperfusion to induce
myocardial infarction. In these animals, infarct size was measured. IPC reduced infarct
size in the nondiabetic rats but not in the diabetic animals. In diabetic rats, IPC
induced phosphorylation of the mitogen-activated protein kinases and of heat shock
protein 27. We conclude that protection by IPC is blocked by diabetes mellitus in
the rat heart in vivo without affecting phosphorylation of mitogen-activated protein
kinases or heat shock protein 27. Therefore, the blockade mechanism of diabetes mellitus
is downstream of mitogen-activated kinases and heat shock protein 27.
Key words
diabetes mellitus - myocardial infarction - infarct size - signal transduction - cardioprotection
- ischemia - reperfusion
References
- 1
Tunstall-Pedoe H, Kuulasmaa K, Amouyel P, Arveiler D, Rajakangas AM, Pajak A.
Myocardial infarction and coronary deaths in the World Health Organization Monica
Project: registration procedures, event rates, and case-fatality rates in 38 populations
from 21 countries in 4 continents.
Circulation.
1990;
90
583-612
- 2
Feskens EJ, Kromhout D.
Glucose tolerance and the risk of cardiovascular disease: the Zutphen Study.
J Clin Epidemiol.
1992;
45
1327-1334
- 3
Kannel WB, MacGee DL.
Diabetes and glucose tolerance as risk factors for cardiovascular disease: the Framingham
Study.
Diabetes Care.
1979;
2
120-126
- 4
Jelesoff NE, Feinglos M, Granger CB, Califf RM.
Outcomes of diabetic patients following acute myocardial infarction: a review of the
major thrombolytic trials.
Coron Artery Dis.
1996;
7
732-743
- 5
Orlander PR, Goff DC, Morrissey M, Ramsey DJ, Wear ML, Labarthe DR, Nichaman MZ.
The relation of diabetes to the severity of acute myocardial infarction and post-myocardial
infarction survival in Mexican-Americans and non-Hispanic whites. The Corpus Christi
Heart Project.
Diabetes.
1994;
43
897-902
- 6
Mukamal KJ, Nesto RW, Cohen MC, Muller JE, Maclure M, Sherwood JB, Mittleman MA.
Impact of diabetes on long-term survival after acute myocardial infarction.
Diabetes Care.
2001;
24
1422-1427
- 7
Murry CE, Jennings RB, Reimer KA.
Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium.
Circulation.
1986;
74
1124-1136
- 8
Bolli R.
The late phase of preconditioning.
Circ Res.
2000;
87
972-983
- 9
Kersten JR, Toller WG, Gross ER, Pagel PS, Warltier DC.
Diabetes abolishes ischemic preconditioning: role of glucose, insulin, and osmolality.
Am J Physiol Heart Circ Physiol.
2000;
278
H1218-H1224
- 10
Ebel D, Müllenheim J, Fräßdorf J, Heinen A, Huhn R, Bohlen T, Ferrari J, Südkamp H,
Preckel B, Schlack W, Thämer V.
Effect of acute hyperglycemia and diabetes mellitus with and without short-term insulin
treatment on myocardial ischemic late preconditioning in the rabbit heart in vivo.
Pflügers Arch Eur J Physiol.
2003;
446
175-182
- 11
Ishihara M, Inoue I, Kawagoe T, Shimatani Y, Kurisu S, Nishioka K, Kouno Y, Umemura T.
Diabetes mellitus prevents ischemic preconditioning in patients with a first acute
anterior wall myocardial infarction.
J Am Coll Cardiol.
2001;
38
1007-1011
- 12
Tong H, Chen W, Steenbergen C, Murphy E.
Ischemic preconditioning activates phosphatidylinositol-3-kinase upstream of protein
kinase C.
Circ Res.
2000;
87
309-315
- 13
Mocanu MM, Bell RM, Yellon DM.
PI3 kinase and not p42/p44 appears to be implicated in the protection conferred by
ischemic preconditioning.
J Mol Cell Cardiol.
2002;
34
661-668
- 14
Tsang A, Hausenloy DJ, Mocanu MM, Carr RD, Yellon DM.
Preconditioning the diabetic heart. The importance of Akt Phosphorylation.
Diabetes.
2005;
54
2360-2364
- 15
Michel MC, Li Y, Heusch G.
Mitogen-activated protein kinases in the heart.
Naunyn Schmiedebergs Arch Pharmacol.
2001;
363
245-266
- 16
Yellon DM, Downey JM.
Preconditioning the myocardium: from cellular physiology to clinical cardiology.
Physiol Rev.
2003;
83
1113-1151
- 17
Nagy N, Shiroto K, Malik G, Huang CK, Gaestel M, Abdellatif M, Tosaki A, Maulik N,
Das DK.
Ischemic preconditioning involves dual cardio-protective axes with p38MAPK as upstream
target.
J Mol Cell Cardiol.
2007;
42
981-990
- 18
Clerk A, Michael A, Sudgen PH.
Stimulation of multiple mitogen-activated protein kinases sub-families by oxidative
stress and phosphorylation of the small heat shock proteins, HSP25/27, in neonatal
ventricular myocytes.
Biochem J.
1998;
333
581-589
- 19
Grussner R, Nakhleh R, Grussner A, Tomadze G, Diem P, Sutherland D.
Streptozotocin-induced diabetes mellitus in pigs.
Horm Metab Res.
1993;
25
199-203
- 20
Yoshino G, Matsushita M, Maeda E, Morita M, Nagata K, Matsuba K, Tani T, Horinuki R,
Kimura Y, Kazumi T.
Effect of probucol on re-covery from streptozotocin diabetes in rats.
Horm Metab Res.
1992;
24
306-309
- 21
Garcia JB, Venturino MC, Alvarez E, Fabiano de BL, Braun M, Pivetta OH, Basabe JC.
Insulin secretion stimulated by allogeneic lymphocytes in an inbred strain of mice.
J Clin Invest.
1986;
77
1453-1459
- 22
Obal D, Preckel B, Scharbatke H, Müllenheim J, Höterkes F, Thämer V, Schlack W.
One MAC of sevoflurane already provides protection against reperfusion injury in the
rat heart in vivo.
Br J Anaesth.
2001;
87
905-911
- 23
Lowry OH.
Protein measurement with Folin phenol reagent.
J Biol Chem.
1951;
193
265-270
- 24
Kloner RA, Shook T, Przyklenk K, Davis VG, Junio L, Matthews RV, Burstein S, Gibson M,
Poole WK, Cannon CP, MacCabe CH, Braunwald E.
Previous angina alters in-hospital outcome in TIMI 4. A clinical correlate to preconditioning?.
Circulation.
1995;
91
37-45
- 25
Kloner RA, Shook T, Antman EM, Cannon CP, Przyklenk K, Yoo K, MacCabe CH, Braunwald E.
Prospective temporal analysis of the onset of preinfarction angina versus outcome:
an ancillary study in TIMI-9B.
Circulation.
1998;
97
1042-1045
- 26
Ghosh S, Standen NB, Galinanes M.
Failure to precondition pathological human myocardium.
J Am Coll Cardiol.
2001;
37
711-718
- 27
Cleveland
Jr
JC, Meldrum DR, Cain BS, Banerjee A, Harken AH.
Oral sulfonylurea hypoglycemic agents prevent ischemic preconditioning in human myocardium
– Two paradoxes revisited.
Circulation.
1997;
96
29-32
- 28
Kersten JR, Schmeling TJ, Orth KG, Pagel PS, Warltier DC.
Acute hyperglycemia abolishes ischemic preconditioning in vivo.
Am J Physiol Heart Circ Physiol.
1998;
275
H721-H725
- 29
Nieszner E, Posa I, Kocsis E, Pogatsa G, Preda I, Koltai MZ.
Influence of diabetic state and that of different sulfonylureas on the size of myocardial
infarction with and without ischemic preconditioning in rabbits.
Exp Clin Endocrinol Diabetes.
2002;
110
212-218
- 30
Ebel D, Redler S, Preckel B, Schlack W, Thämer V.
Moderate glucose deprivation preconditions myocardium against infarction.
Horm Metab Res.
2005;
37
516-520
- 31
Gross GJ, Peart JN.
KATP channels and myocardial preconditioning: an update.
Am J Physiol Heart Circ Physiol.
2003;
285
H921-H930
- 32
Samavati L, Monick MM, Sanlioglu S, Buettner GR, Oberley LW, Hunninghake GW.
Mitochondrial KATP channel openers activate the ERK kinase by an oxidant-dependent mechanism.
Am J Physiol Cell Physiol.
2002;
283
C273-C281
- 33
Smith JM, Wahler GM.
ATP-sensitive potassium channels are altered in ventricular myocytes from diabetic
rats.
Mol Cell Biochem.
1996;
158
43-51
- 34
Kersten JR, Montgomery MW, Ghassemi T, Gross ER, Toller WG, Pagel PS, Warltier DC.
Diabetes and hyperglycemia impair activation of mitochondrial KATP channels.
Am J Physiol Heart Circ Physiol.
2001;
280
H1744-H1750
- 35
Tosaki A, Engelman DT, Engelman RM, Das DK.
The evolution of diabetic response to ischemia/reperfusion and preconditioning in
isolated working rat hearts.
Cardiovasc Res.
1996;
31
526-536
- 36
Lu R, Hu CP, Peng J, Deng HW, Li YJ.
Role of calcitonin gene-related peptide in ischaemic preconditioning in diabetic rat
hearts.
Clin Exp Pharmacol Physiol.
2001;
28
392-396
- 37
Qin Q, Downey JM, Cohen MV.
Acetylcholine but not adenosine triggers preconditioning through PI3-kinase and a
tyrosine kinase.
Am J Physiol Heart Circ Physiol.
2003;
284
H727-H734
- 38
Loubani M, Galinanes M.
Pharmacological and ischemic preconditioning of the human myocardium: mitoKATP channels are upstream and p38MAPK is downstream of PKC.
BMC Physiology.
2002;
2
10
- 39
Philipp S, Critz SD, Cui L, Solodushko V, Cohen MV, Downey JM.
Localizing extracellular signal-regulated kinase (ERK) in pharmacological preconditioning's
trigger pathway.
Basic Res Cardiol.
2006;
101
159-167
- 40
Wang S, Cone J, Liu Y.
Dual roles of mitochondrial KATP channels in diazoxide-mediated protection in isolated rabbit hearts.
Am J Physiol Heart Circ Physiol.
2001;
280
H246-H256
- 41
Strniskova M, Barancik M, Neckar J, Ravingerova T.
Mitogen-activated protein kinases in the acute diabetic myocardium.
Mol Cell Biochem.
2003;
249
59-65
- 42
Tatsumi T, Matoba S, Kobara M, Keira N, Kawahara A, Tsuruyama K, Tanaka T, Katamura M,
Nakagawa C, Ohta B, Yamahara Y, Asayama J, Nakagawa M.
Energy metabolism after ischemic preconditioning in streptozotocin-induced diabetic
rat hearts.
J Am Coll Cardiol.
1998;
31
707-715
- 43
Ravingerova T, Stetka R, Volkovova K, Pancza D, Dzurba A, Ziegelhöffer A, Styk J.
Acute diabetes modulates response to ischemia in isolated rat heart.
Mol Cell Biochem.
2000;
210
143-151
- 44
Baines CP, Cohen MV, Downey JM.
Signal transduction in ischemic preconditioning: The role of kinases and mitochondrial
KATP channels.
J Cardiovasc Electrophysiol.
1999;
10
741-754
- 45
Kim SO, Baines CP, Critz SD, Pelech SL, Katz S, Downey JM, Cohen MV.
Ischemia induced activation of heat shock protein 27 kinases and casein kinase 2 in
the preconditioned rabbit heart.
Biochem Cell Biol.
1999;
77
559-567
- 46
Maulik N, Watanabe M, Zu YL, Huang CK, Cordis GA, Schley JA, Das DK.
Ischemic preconditioning triggers the activation of MAP kinases and MAPKAP kinase
2 in rat hearts.
FEBS Lett.
1996;
396
233-237
Correspondence
PD Dr. D. Ebel
Department of Intensive Care Medicine
Radboud University Nijmegen Medical Center
Geert Grooteplein 10
P.O. Box 9101
6500 HB Nijmegen
The Netherlands
Phone: +31/24/36 14 17 0
Fax: +31/24/35 41 61 2
Email: D.Ebel@ic.umcn.nl